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Defect Formation in a Dynamic Transition
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When a system that undergoes a continuous phase transition is swept through its critical
point the initial symmetry is broken and domains are formed. Because of critical slowing
down it is not possible to sweep adiabatically; the number of domains therefore depends
on the rate of increase of the critical parameter. We give a summary of recent theoretical
results for the number of defects produced as a function of how rapidly the transition
point is passed. They are obtained from a simplified model, using a stochastic partial
differential equation that is also solved numerically.

We start with a simple system: an overdamped particle in a potential that is
slowly changed from single-welled to double-welled (Fig. 1). The particle does
not slide down into one of the minima until well after the central position becomes
unstable. The lingering at the top of the hill, known as the delay of bifurcation,
has a characteristic time given byµ−1ĝ, whereĝ = √2µ| logε|, µ is the rate of
increase ofg andε the magnitude of additive fluctuations (Jansons and Lythe,
1998; Lythe and Proctor, 1993; Stockset al., 1989; Swiftet al., 1991; Torrent and
San Miguel, 1988; van den Broeck and Mandel, 1987).

The same delay is found in spatially extended systems. In addition, there
is a characteristic length for the spatial structure after the “quench” (Laguna and
Zurek, 1997; Lythe, 1994, 1996, 1997; Moro and Lythe, 1999). The spatial structure
formed during the sweep through the critical point from the symmetric to broken-
symmetry regime is frozen in by the nonlinearity when, sufficiently far into the
symmetry-broken regime, the system attains a metastable state. Analytical progress
is possible because the critical region is well described by an equation which,
although stochastic and nonautonomous, is linear (Lythe, 1996; Moro and Lythe,
1999). We describe the calculation for the overdamped Ginzburg–Landau equation.
Similar results have been found for the Swift–Hohenberg equation (Lythe, 1996)
and for the the Ginzburg–Landau equation with arbitrary damping (Moro and
Lythe, 1999).
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Fig. 1. The potentialv = −(1/2)gy2 = y4. The parameterg is explicitly time-dependent.

A new scenario for the formation of structures in the early universe and a
proposal for its test in laboratory experiments, using liquid Helium, resulted from
an early understanding of this nonequilibrium effect (Zurek, 1985, 1993, 1996).
Experimental results to date tend to support the proposed scenario, but precise
comparison has not yet been possible (B¨auerleet al., 1996; Doddet al., 1998;
Ducci et al., 1999; Gill and Kibble, 1996; Hendryet al., 1994; Karra and Rivers,
1998; Kavoussanakiet al., 2000).

1. THE GINZBURG–LANDAU SPDE

The equation describing the dynamics is written in the following dimension-
less form:

dYt (x) = (g(t)Yt (x)− Yt (x)3+ LYt (x)) dt + ε dWt (x). (1)

HereY : [0, L]m × [−1/µ, 1/µ] ×Ä→ R,Ä is a probability space andWt (x)
is the Brownian sheet. The equations are solved as initial value problems, with

g(t) = µt (2)

slowly increased from−1 to 1. Periodic boundaries inx are used so that no spatial
structure is a boundary effect. The constantsµ, ε, and 1/L are all¿1. The spatial
operatorL = 1, where1 =∑m

i=1 ∂
2/∂x2

i , the Laplacian inRm.
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An alternative scaling of (1) is sometimes illuminating: ifx is rescaled so that
[0, L] → [0, 1], (1) becomes

dYt (x) = (g(t)Yt (x)− Yt (x)3+ D1Yt (x)) dt + D
m
4 ε dWt (x), (3)

whereD = L2.
The Wiener process can be thought of as assigning to each successive interval

of the time axis a Gaussian random variable with variance proportional to the length
of the interval. The Brownian sheet assigns to each volume element inR+ × Rm

a Gaussian random variable whose variance is proportional to the volume of the
element (Walsh, 1986). More precisely, it is possible to define a mapA from
B(R+ × Rm) to a probability space such that for eachh ∈ B(R+ × Rm),A(h) is a
Gaussian random variable with mean zero and〈A(h1)A(h2)〉 = l (h1 ∩ h2), where
l is the Lebesgue measure (Walsh, 1986). The Brownian sheet, so called because its
realizations inm= 1 look like a ruffled bedsheet tucked in on two adjacent sides,
is defined asWt (x) = A([0, t ] × [0, x]), where [0,x] is the element (interval,
square, cube,. . .) with opposite corners at the origin and atx ∈ Rm. Thus W :
Ä× R+ × Rm → R. The setÄ is the set of labels for realizations; averages over
realizations are denoted by angle brackets. EachWt (x) is a real-valued Gaussian
random variable with mean zero and variance〈W2

t (x)〉 = t xm.

2. DYNAMICS FOR FIXED g

Forg < 0, the linearized SPDE is known as the infinite-dimensional Ornstein–
Uhlenbeck process (Da Prato and Zabczyk, 1992; Doering, 1987; Funaki, 1983;
Gyöngy and Pardoux, 1993; Walsh, 1986). Its spatial correlation function is expo-
nential, with characteristic length proportional tog−1/2. Forg > 0 fixed, one sees
a pattern of regions in whichYt (x) is positive and regions in whichYt (x) is negative
(domains), separated by narrow transition layers (kinks). Although the equation is
fully nonlinear, the correlation function can be exactly calculated using the transfer
integral. The method applies to arbitrarily nonlinear SPDEs in one space dimen-
sion, provided they have a stationary density (Currieet al., 1980; Krumhansl and
Schrieffer, 1975; Lythe and Habib, in press; Scalapinoet al., 1972). At late times
there is a dynamic balance between nucleation and annihilation of kink–antikink
pairs (Habib and Lythe, 2000).

3. NUMERICAL SOLUTION

The finite difference method for a parabolic SPDE consists of replacing the
infinite-dimensional system (1) byNm ordinary SDEs on a grid of equally spaced
points in [0,L]m separated by1x. The SDE at positionx is

dϒt (x) = −gϒt (x) dt + ρ1̃ϒt (x) dt +1x−
m
2 ε dWt (x), (4)
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where〈dWt (x) dWt (x′)〉 = δx−x′ dt,

1̃ϒt (x) =
∑

x′
ϒt (x

′)− 2mϒt (x), (5)

with the sum over the 2m nearest neighbours ofx.
The transfer integral can be used to calculate the dependence of thermody-

namic quantities such as the correlation function on the grid spacing. The lowest
order corrections to the continuum in one space dimension are proportional to1x2

and equivalent to a corrected on-site potential (Bettencourtet al., 1999; Trullinger
and Sasaki, 1987). An algorithm has been devised, with the potential augmented by
a term proportional to1x2, which gives improved convergence to the continuum
(Bettencourtet al., 1999; Lythe and Habib, in press).

4. LINEARIZATION

The first hypothesis that facilitates analytical solution is that everywhereYt (x)
remains small forg < gc, where

gc =
√

2µ| logε|. (6)

Thereafter the emerging pattern of domains can be studied without the cubic term.
The solution of the linearized version of (1) is

Yt (x) =
∫

[0,L]m

G(t, t0, x, v) f (v) dv

+ ε
∫ t

t0

∫
[0,L]m

G(t, s, x, v) dv dWs(v), (7)

where

G(t, s, x, v) = (4π (t − s))
−m
2 exp(−µ(t2− s2))

×
∞∑

j=−∞
exp

(
− (x − v − j L )2

4(t − s)

)
. (8)

The first term in (7), dependent on the initial dataf (x), decays exponentially.
After an initial transient, the correlation function is therefore obtained from the
second, stochastic, integral in (7). Performing the integration over space, assuming
L À µ−1/2 gives

c(x) = 〈Yt (x
′)Yt (x

′ + x)〉 = ε2
∫ t

t0

eµ(t2−s2) e−
x2

8(t−s)

(8π (t − s))
m
2

ds. (9)

SinceYt (x) satisfies a nonautonomous SPDE, the correlation function is ex-
plicitly a function of time. In the early part of the evolution, however, the deviation
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from that obtained from the corresponding static (g= constant) equation is small.
We consider this quasistatic period by making the change of variablesu = t − s
in (9). Then

exp(µ(t2− s2)) = exp(2µtu− µu2) = exp(2µtu) (1− µu2+ · · ·) (10)

and

c(x) = ε2

(8π )
m
2

(∫ ∞
0

e−2|g|u

u
m
2

e−
x2

8u du− µ
∫ ∞

0

e−2|g|u

u
m
2−2

e−
x2

8u du+ · · ·
)
. (11)

Thus

c(x) = ε2

2

|g|m4− 1
2

(2π )
m
2

x1−m
2

(
K m

2−1
(
x
√
|g|)+ µ

g2

x2

16
|g|K m

2−3
(
x
√
|g|)+ · · ·) . (12)

whereKm is the modified Bessel function of orderm. For example, whenm= 1,

c(x − x′) = ε2

4
√|g| e

−|x−x′|√|g|
(

1− 3

16

µ

g2

(
1+ x

√
|g| + 1

3
x2|g|

)
+ · · ·

)
.

(13)

The first term in (12) is the (long-time) correlation function for the SPDE obtained
by fixing g < 0 (Knight, 1981). Clearly the expansion inµ/g2 is no longer useful
for g > −√µ. The correlation function itself, however, remains well behaved as
g passes through 0; the divergences associated with critical slowing down are not
present.

In one space dimension, the solution of the SPDE (1) is a stochastic process,
with values in a space of continuous functions (Da Prato and Zabczyk, 1992;
Doering, 1987; Funaki, 1983; Gy¨ongy and Pardoux, 1993; Walsh, 1986). That
is, for fixedω ∈ Ä andt ∈ [−1/µ, 1/µ], one obtains a configurationYt (x) that
is a continuous function ofx. This can be pictured as the shape of a string, at
time t , that is constantly subject to small random impulses all along its length. In
more than one space dimension, however, theYt (x) are not continuous functions
but only distributions (Walsh, 1986), and the correlation functionc(x) diverges at
x = 0. In the nonautonomous equations studied here, however, the divergent part
does not grow exponentially forg > 0 and, after the quench, it is only apparent
on extremely small scales, beyond the resolution of any feasible finite difference
algorithm.

We now examine the evolution forg >
√
µ, where we can approximate (9)

using Laplace’s formula:

c(x) ' ε2

√
µ

eµt2

(8t)
m
2

e−
x2

8t . (14)
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Thus typical values ofYt (x) increase exponentially fast and the correlation length
at time t is

√
8t . Oncec(0) > O(ε), the noise no longer greatly influences the

evolution; its effect can be thought of as wiping out the memory of the initial
condition atg < 0 and replacing it with an effective random initial condition.
From (14), we see that, atg = √2µ| logε|, c(0)= O(1) and the cubic nonlinearity
can no longer be ignored.

5. FREEZING IN

The second hypothesis that enables the characteristic domain size to be esti-
mated is that the effect of the cubic nonlinearity, when it finally makes itself felt, is
to freeze in the spatial structure. This is indeed the case in numerical simulations:
no perceptible changes occur betweeng = gc andg = 1 (Lythe, 1994, 1996). Thus
the correlation length atg = gc,

λ =
√

8gc

µ
= 2

7
4

( | logε|
µ

) 1
4

, (15)

becomes the characteristic length for the spatial structure afterg = gc.

6. DENSITY OF UPCROSSINGS

Consider a homogeneous Gaussian random fieldYt (x) in one space dimension
with correlation functionc(x). ThenYt (x +1x)− Yt (x) is a Gaussian random
variable with mean zero and variance

〈(Yt (x +1x)− Yt (x))2〉 = b(1x),

where

b(1x) = 2(c(0)− c(1x)) = −2c′(0)1x − c′′(0)1x2+ · · · . (16)

The probability thatYt (x) has an upcrossing of 0 betweenx andx +1x is given by

P[(upcrossing∈ (x, x +1x))]

=
∫ 0

−∞
P[Yt (x) = u]P[Yt (x +1x)− Yt (x) > u ] du

= (2π )−1(b(1x)c(0))−
1
2

∫ ∞
0

e
−u2

2c(0)

∫ ∞
u

e
−v2

2b(1x) dv du

= 1

2

(
b(1x)

πc(0)

) 1
2
∫ ∞

0
exp

(
−w2 b(1x)

c(0)

)
(1− erf(w)) dw

= 1

2π
arctan

((
b(1x)

c(0)

) 1
2

)
. (17)
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Now consider a grid of total lengthL made up ofN sites separated by1x. Let
1x→ 0 with L fixed, i.e. letN →∞. We find the density of upcrossings by a
Taylor expansion of (17) as1x→ 0:

P[(upcrossing∈ (x, x +1x))] → 1

2π

(
b(1x)

c(0)

) 1
2

as 1x→ 0. (18)

• It c′(0) 6= 0, the probability of an upcrossing in a given interval is propor-
tional to1x

1
2 . Thedensityof zero crossings is thus proportional to1x−

1
2

for 1x→ 0, and is infinite in the continuum limit. This is true of many
stochastic processes.
• If c′(0)= 0 andc′′(0) < 0, the mean number of zero crossings per unit

lengthr/L approaches a finite number as1x→ 0, given by (Adler, 1981;
Ito, 1964):

r

L
= 1

2π

√
−c′′(0)

c(0)
. (19)

This is the case for the correlation function after a quench in one space
dimension (14).

7. DISCUSSION

There are three successive regimes in the evolution, as the critical parameter
is increased.

• In the earliest regime, sufficiently far from the critical point, the evolution is
quasiadiabatic: a small perturbation of that found for constant parameters.
• In the second region, close to the critical point, the system can no longer

react quickly enough to the time dependence of the critical parameter.
• In the final region, the spatial structure consists of narrow kinks separating

long regions where the field is close to one of the minima of the potential.
The spatial structure is frozen in in the sense that the motion, merging and
occasional nucleation of kink-antikink pairs, happens on a slower timescale
than the process that formed them.

For the purposes of calculating the number of kinks formed, the end of the second,
nonequilibrium region is the key.
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